Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Early Malware Detection and Next-Action Prediction (2306.06255v1)

Published 9 Jun 2023 in cs.CR, cs.SY, and eess.SY

Abstract: In this paper, we propose a framework for early-stage malware detection and mitigation by leveraging NLP techniques and machine learning algorithms. Our primary contribution is presenting an approach for predicting the upcoming actions of malware by treating application programming interface (API) call sequences as natural language inputs and employing text classification methods, specifically a Bi-LSTM neural network, to predict the next API call. This enables proactive threat identification and mitigation, demonstrating the effectiveness of applying NLP principles to API call sequences. The Bi-LSTM model is evaluated using two datasets. %The model achieved an accuracy of 93.6\% and 88.8\% for the %first and second dataset respectively. Additionally, by modeling consecutive API calls as 2-gram and 3-gram strings, we extract new features to be further processed using a Bagging-XGBoost algorithm, effectively predicting malware presence at its early stages. The accuracy of the proposed framework is evaluated by simulations.

Citations (1)

Summary

We haven't generated a summary for this paper yet.