Papers
Topics
Authors
Recent
2000 character limit reached

A Survey on Federated Learning Poisoning Attacks and Defenses

Published 6 Jun 2023 in cs.CR | (2306.03397v1)

Abstract: As one kind of distributed machine learning technique, federated learning enables multiple clients to build a model across decentralized data collaboratively without explicitly aggregating the data. Due to its ability to break data silos, federated learning has received increasing attention in many fields, including finance, healthcare, and education. However, the invisibility of clients' training data and the local training process result in some security issues. Recently, many works have been proposed to research the security attacks and defenses in federated learning, but there has been no special survey on poisoning attacks on federated learning and the corresponding defenses. In this paper, we investigate the most advanced schemes of federated learning poisoning attacks and defenses and point out the future directions in these areas.

Citations (5)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.