Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Enhancing naive classifier for positive unlabeled data based on logistic regression approach (2306.02798v1)

Published 5 Jun 2023 in stat.ML and cs.LG

Abstract: We argue that for analysis of Positive Unlabeled (PU) data under Selected Completely At Random (SCAR) assumption it is fruitful to view the problem as fitting of misspecified model to the data. Namely, we show that the results on misspecified fit imply that in the case when posterior probability of the response is modelled by logistic regression, fitting the logistic regression to the observable PU data which {\it does not} follow this model, still yields the vector of estimated parameters approximately colinear with the true vector of parameters. This observation together with choosing the intercept of the classifier based on optimisation of analogue of F1 measure yields a classifier which performs on par or better than its competitors on several real data sets considered.

Summary

We haven't generated a summary for this paper yet.