Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exploring Robustness of Image Recognition Models on Hardware Accelerators (2306.01697v6)

Published 2 Jun 2023 in cs.LG, cs.SE, cs.SY, and eess.SY

Abstract: As the usage of AI on resource-intensive and safety-critical tasks increases, a variety of Machine Learning (ML) compilers have been developed, enabling compatibility of Deep Neural Networks (DNNs) with a variety of hardware acceleration devices. However, given that DNNs are widely utilized for challenging and demanding tasks, the behavior of these compilers must be verified. To this direction, we propose MutateNN, a tool that utilizes elements of both differential and mutation testing in order to examine the robustness of image recognition models when deployed on hardware accelerators with different capabilities, in the presence of faults in their target device code - introduced either by developers, or problems in their compilation process. We focus on the image recognition domain by applying mutation testing to 7 well-established DNN models, introducing 21 mutations of 6 different categories. We deployed our mutants on 4 different hardware acceleration devices of varying capabilities and observed that DNN models presented discrepancies of up to 90.3% in mutants related to conditional operators across devices. We also observed that mutations related to layer modification, arithmetic types and input affected severely the overall model performance (up to 99.8%) or led to model crashes, in a consistent manner across devices.

Citations (2)

Summary

We haven't generated a summary for this paper yet.