Papers
Topics
Authors
Recent
Search
2000 character limit reached

GANDiffFace: Controllable Generation of Synthetic Datasets for Face Recognition with Realistic Variations

Published 31 May 2023 in cs.CV | (2305.19962v1)

Abstract: Face recognition systems have significantly advanced in recent years, driven by the availability of large-scale datasets. However, several issues have recently came up, including privacy concerns that have led to the discontinuation of well-established public datasets. Synthetic datasets have emerged as a solution, even though current synthesis methods present other drawbacks such as limited intra-class variations, lack of realism, and unfair representation of demographic groups. This study introduces GANDiffFace, a novel framework for the generation of synthetic datasets for face recognition that combines the power of Generative Adversarial Networks (GANs) and Diffusion models to overcome the limitations of existing synthetic datasets. In GANDiffFace, we first propose the use of GANs to synthesize highly realistic identities and meet target demographic distributions. Subsequently, we fine-tune Diffusion models with the images generated with GANs, synthesizing multiple images of the same identity with a variety of accessories, poses, expressions, and contexts. We generate multiple synthetic datasets by changing GANDiffFace settings, and compare their mated and non-mated score distributions with the distributions provided by popular real-world datasets for face recognition, i.e. VGG2 and IJB-C. Our results show the feasibility of the proposed GANDiffFace, in particular the use of Diffusion models to enhance the (limited) intra-class variations provided by GANs towards the level of real-world datasets.

Citations (40)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.