On the use of automatically generated synthetic image datasets for benchmarking face recognition (2106.04215v1)
Abstract: The availability of large-scale face datasets has been key in the progress of face recognition. However, due to licensing issues or copyright infringement, some datasets are not available anymore (e.g. MS-Celeb-1M). Recent advances in Generative Adversarial Networks (GANs), to synthesize realistic face images, provide a pathway to replace real datasets by synthetic datasets, both to train and benchmark face recognition (FR) systems. The work presented in this paper provides a study on benchmarking FR systems using a synthetic dataset. First, we introduce the proposed methodology to generate a synthetic dataset, without the need for human intervention, by exploiting the latent structure of a StyleGAN2 model with multiple controlled factors of variation. Then, we confirm that (i) the generated synthetic identities are not data subjects from the GAN's training dataset, which is verified on a synthetic dataset with 10K+ identities; (ii) benchmarking results on the synthetic dataset are a good substitution, often providing error rates and system ranking similar to the benchmarking on the real dataset.
- Laurent Colbois (6 papers)
- Tiago de Freitas Pereira (4 papers)
- Sébastien Marcel (39 papers)