Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 45 tok/s
GPT-5 High 43 tok/s Pro
GPT-4o 103 tok/s
GPT OSS 120B 475 tok/s Pro
Kimi K2 215 tok/s Pro
2000 character limit reached

Batch Model Consolidation: A Multi-Task Model Consolidation Framework (2305.16484v1)

Published 25 May 2023 in cs.LG and cs.AI

Abstract: In Continual Learning (CL), a model is required to learn a stream of tasks sequentially without significant performance degradation on previously learned tasks. Current approaches fail for a long sequence of tasks from diverse domains and difficulties. Many of the existing CL approaches are difficult to apply in practice due to excessive memory cost or training time, or are tightly coupled to a single device. With the intuition derived from the widely applied mini-batch training, we propose Batch Model Consolidation ($\textbf{BMC}$) to support more realistic CL under conditions where multiple agents are exposed to a range of tasks. During a $\textit{regularization}$ phase, BMC trains multiple $\textit{expert models}$ in parallel on a set of disjoint tasks. Each expert maintains weight similarity to a $\textit{base model}$ through a $\textit{stability loss}$, and constructs a $\textit{buffer}$ from a fraction of the task's data. During the $\textit{consolidation}$ phase, we combine the learned knowledge on 'batches' of $\textit{expert models}$ using a $\textit{batched consolidation loss}$ in $\textit{memory}$ data that aggregates all buffers. We thoroughly evaluate each component of our method in an ablation study and demonstrate the effectiveness on standardized benchmark datasets Split-CIFAR-100, Tiny-ImageNet, and the Stream dataset composed of 71 image classification tasks from diverse domains and difficulties. Our method outperforms the next best CL approach by 70% and is the only approach that can maintain performance at the end of 71 tasks; Our benchmark can be accessed at https://github.com/fostiropoulos/stream_benchmark

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.