Papers
Topics
Authors
Recent
Search
2000 character limit reached

Fast Generation of Spectrally-Shaped Disorder

Published 25 May 2023 in cond-mat.stat-mech, cond-mat.mtrl-sci, physics.comp-ph, and physics.optics | (2305.15693v2)

Abstract: Media with correlated disorder display unexpected transport properties, but it is still a challenge to design structures with desired spectral features at scale. In this work, we introduce an optimal formulation of this inverse problem by means of the non-uniform fast Fourier transform, thus arriving at an algorithm capable of generating systems with arbitrary spectral properties, with a computational cost that scales $O(N \log N)$ with system size. The method is extended to accommodate arbitrary real-space interactions, such as short-range repulsion, to simultaneously control short- and long-range correlations. We thus generate the largest-ever stealthy hyperuniform configurations in $2d$ ($N = 109$) and $3d$ ($N > 107$). By an Ewald sphere construction we link the spectral and optical properties at the single-scattering level, and show that these structures in $2d$ and $3d$ generically display transmission gaps, providing a concrete example of fine-tuning of a physical property at will. We also show that large $3d$ power-law hyperuniformity in particle packings leads to single-scattering properties near-identical to those of simple hard spheres. Finally, we show that enforcing large spectral power at a small number of peaks with the right symmetry leads to the non-deterministic generation of quasicrystalline structures in both $2d$ and $3d$.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (21)
  1. C. Kittel, Introduction to Solid-state Physics (John Wiley & Sons, New York, 1953).
  2. R. Carminati and J. C. Schotland, Principles of Scattering and Transport of Light (Cambridge University Press, 2021).
  3. V. van Gogh, “Starry Night,”  (1889).
  4. S. Torquato, Physics Reports 745, 1 (2018).
  5. S. Torquato and J. Kim, Physical Review X 11, 21002 (2021).
  6. D. Hexner and D. Levine, Physical Review Letters 114, 110602 (2015).
  7. D. Levine and P. J. Steinhardt, Physical Review Letters 53, 2477 (1984).
  8. J.-P. Hansen and I. R. McDonald, Theory of simple liquids (Elsevier Academic Press, 2006).
  9. D. Schwarzenbach, Crystallography (John Wiley \\\backslash\& Sons, 1996).
  10. D. C. Liu and J. Nocedal, Mathematical Programming 45, 503 (1989).
  11. J. Nocedal and S. Wright, Numerical Optimization (Springer, 1999).
  12. J. Kim and S. Torquato, Proceedings of the National Academy of Sciences of the United States of America 117, 8764 (2020).
  13. A. Vrij, The Journal of Chemical Physics 69, 1742 (1978).
  14. Y. Rosenfeld, Physical Review A 42, 5978 (1990).
  15. Z. Ma and S. Torquato, Journal of Applied Physics 121, 244904 (2017).
  16. F. Sgrignuoli and L. Dal Negro, Physical Review B 103, 224202 (2021).
  17. R. L. McGreevy, Journal of Physics Condensed Matter 13, R877 (2001).
  18. F. H. Stillinger and T. A. Weber, Physical Review B 31, 5262 (1985).
  19. A. Lumière and L. Lumière, ‘‘Arrivée d’un Train en Gare de La Ciotat,”  (1896).
  20. E. van der Velden, Journal of Open Source Software 5, 2004 (2020).
  21. A. H. Barnett, Applied and Computational Harmonic Analysis 51, 1 (2021).
Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 4 tweets with 13 likes about this paper.