Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

DIVA: A Dirichlet Process Mixtures Based Incremental Deep Clustering Algorithm via Variational Auto-Encoder (2305.14067v3)

Published 23 May 2023 in cs.LG and stat.ML

Abstract: Generative model-based deep clustering frameworks excel in classifying complex data, but are limited in handling dynamic and complex features because they require prior knowledge of the number of clusters. In this paper, we propose a nonparametric deep clustering framework that employs an infinite mixture of Gaussians as a prior. Our framework utilizes a memoized online variational inference method that enables the "birth" and "merge" moves of clusters, allowing our framework to cluster data in a "dynamic-adaptive" manner, without requiring prior knowledge of the number of features. We name the framework as DIVA, a Dirichlet Process-based Incremental deep clustering framework via Variational Auto-Encoder. Our framework, which outperforms state-of-the-art baselines, exhibits superior performance in classifying complex data with dynamically changing features, particularly in the case of incremental features. We released our source code implementation at: https://github.com/Ghiara/diva

Citations (1)

Summary

We haven't generated a summary for this paper yet.