Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 218 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Study on Intelligent Forecasting of Credit Bond Default Risk (2305.12142v3)

Published 20 May 2023 in q-fin.RM

Abstract: Credit risk in the China's bond market has become increasingly evident, creating a progressively escalating risk of default for credit bond investors. Given the current incomplete and inaccurate bond information disclosure, timely tracking and forecasting the individual credit bond default risks have become essential to maintain market stability and ensure healthy development. This paper proposes an Intelligent Forecasting Framework for Default Risk that provides precise day-by-day default risk prediction. In this framework, we first summarize the factors that impact credit bond defaults and construct a risk index system. Then, we employ a combined default probability annotation method based on the evolutionary characteristics of bond default risk. The method considers the weighted average of Variational Bayesian Gaussian Mixture estimation, Market Index estimation, and Default Trend Backward estimation for daily default risk annotation of matured or defaulted bonds according to the risk index system. Moreover, to mine time-series correlation and cross-sectional index correlation features efficiently, an intelligent prediction model for Chinese credit bond default risk is designed using the ConvLSTM neural network and trained with structured feature data. The experiments demonstrate that the predicted individual bond risk is slightly higher and substantially more responsive to fluctuations than the risk indicated by authoritative ratings, thereby improving on the inadequacies of inflated and untimely bond ratings. Consequently, this study's findings offer multiple insights for regulators, issuers, and investors.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.