Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 201 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

The Deep Promotion Time Cure Model (2305.11575v1)

Published 19 May 2023 in stat.ML and cs.LG

Abstract: We propose a novel method for predicting time-to-event in the presence of cure fractions based on flexible survivals models integrated into a deep neural network framework. Our approach allows for non-linear relationships and high-dimensional interactions between covariates and survival and is suitable for large-scale applications. Furthermore, we allow the method to incorporate an identified predictor formed of an additive decomposition of interpretable linear and non-linear effects and add an orthogonalization layer to capture potential higher dimensional interactions. We demonstrate the usefulness and computational efficiency of our method via simulations and apply it to a large portfolio of US mortgage loans. Here, we find not only a better predictive performance of our framework but also a more realistic picture of covariate effects.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com