Papers
Topics
Authors
Recent
Search
2000 character limit reached

Convergence and Privacy of Decentralized Nonconvex Optimization with Gradient Clipping and Communication Compression

Published 17 May 2023 in cs.LG and math.OC | (2305.09896v1)

Abstract: Achieving communication efficiency in decentralized machine learning has been attracting significant attention, with communication compression recognized as an effective technique in algorithm design. This paper takes a first step to understand the role of gradient clipping, a popular strategy in practice, in decentralized nonconvex optimization with communication compression. We propose PORTER, which considers two variants of gradient clipping added before or after taking a mini-batch of stochastic gradients, where the former variant PORTER-DP allows local differential privacy analysis with additional Gaussian perturbation, and the latter variant PORTER-GC helps to stabilize training. We develop a novel analysis framework that establishes their convergence guarantees without assuming the stringent bounded gradient assumption. To the best of our knowledge, our work provides the first convergence analysis for decentralized nonconvex optimization with gradient clipping and communication compression, highlighting the trade-offs between convergence rate, compression ratio, network connectivity, and privacy.

Citations (7)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.