Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MPI-rical: Data-Driven MPI Distributed Parallelism Assistance with Transformers (2305.09438v3)

Published 16 May 2023 in cs.DC, cs.CL, and cs.LG

Abstract: Message Passing Interface (MPI) plays a crucial role in distributed memory parallelization across multiple nodes. However, parallelizing MPI code manually, and specifically, performing domain decomposition, is a challenging, error-prone task. In this paper, we address this problem by developing MPI-RICAL, a novel data-driven, programming-assistance tool that assists programmers in writing domain decomposition based distributed memory parallelization code. Specifically, we train a supervised LLM to suggest MPI functions and their proper locations in the code on the fly. We also introduce MPICodeCorpus, the first publicly available corpus of MPI-based parallel programs that is created by mining more than 15,000 open-source repositories on GitHub. Experimental results have been done on MPICodeCorpus and more importantly, on a compiled benchmark of MPI-based parallel programs for numerical computations that represent real-world scientific applications. MPI-RICAL achieves F1 scores between 0.87-0.91 on these programs, demonstrating its accuracy in suggesting correct MPI functions at appropriate code locations.. The source code used in this work, as well as other relevant sources, are available at: https://github.com/Scientific-Computing-Lab-NRCN/MPI-rical

Citations (7)

Summary

We haven't generated a summary for this paper yet.