Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Consistent Multi-Granular Rationale Extraction for Explainable Multi-hop Fact Verification (2305.09400v1)

Published 16 May 2023 in cs.CL

Abstract: The success of deep learning models on multi-hop fact verification has prompted researchers to understand the behavior behind their veracity. One possible way is erasure search: obtaining the rationale by entirely removing a subset of input without compromising the veracity prediction. Although extensively explored, existing approaches fall within the scope of the single-granular (tokens or sentences) explanation, which inevitably leads to explanation redundancy and inconsistency. To address such issues, this paper explores the viability of multi-granular rationale extraction with consistency and faithfulness for explainable multi-hop fact verification. In particular, given a pretrained veracity prediction model, both the token-level explainer and sentence-level explainer are trained simultaneously to obtain multi-granular rationales via differentiable masking. Meanwhile, three diagnostic properties (fidelity, consistency, salience) are introduced and applied to the training process, to ensure that the extracted rationales satisfy faithfulness and consistency. Experimental results on three multi-hop fact verification datasets show that the proposed approach outperforms some state-of-the-art baselines.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Jiasheng Si (11 papers)
  2. Yingjie Zhu (20 papers)
  3. Deyu Zhou (42 papers)
Citations (3)