Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 119 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 60 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 423 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Temporal Convolution Network Based Onset Detection and Query by Humming System Design (2305.05139v2)

Published 9 May 2023 in cs.SD, cs.MM, and eess.AS

Abstract: Onsets are a key factor to split audio into several notes. In this paper, we ensemble multiple temporal convolution network (TCN) based model and utilize a restricted frequency range spectrogram to achieve more robust onset detection. Different from the present onset detection of QBH system which is only available in a clean scenario, our proposal of onset detection and speech enhancement can prevent noise from affecting onset detection function (ODF). Compared to the CNN model which exploits spatial features of the spectrogram, the TCN model exploits both spatial and temporal features of the spectrogram. As the usage of QBH in noisy scenarios, we apply the TCN-based speech enhancement as a preprocessor of QBH. With the combinations of TCN-based speech enhancement and onset detection, simulations show that the proposal can enable the QBH system in both noisy and clean circumstances with short response time.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.