Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 58 tok/s Pro
Kimi K2 201 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

On Musical Onset Detection via the S-Transform (1712.02567v2)

Published 7 Dec 2017 in eess.AS and cs.SD

Abstract: Musical onset detection is a key component in any beat tracking system. Existing onset detection methods are based on temporal/spectral analysis, or methods that integrate temporal and spectral information together with statistical estimation and machine learning models. In this paper, we propose a method to localize onset components in music by using the S-transform, and thus, the method is purely based on temporal/spectral data. Unlike the other methods based on temporal/spectral data, which usually rely short time Fourier transform (STFT), our method enables effective isolation of crucial frequency subbands due to the frequency dependent resolution of S-transform. Moreover, numerical results show, even with less computationally intensive steps, the proposed method can closely resemble the performance of more resource intensive statistical estimation based approaches.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.