Papers
Topics
Authors
Recent
2000 character limit reached

A bulk manifestation of Krylov complexity (2305.04355v2)

Published 7 May 2023 in hep-th, cond-mat.str-el, and quant-ph

Abstract: There are various definitions of the concept of complexity in Quantum Field Theory as well as for finite quantum systems. For several of them there are conjectured holographic bulk duals. In this work we establish an entry in the AdS/CFT dictionary for one such class of complexity, namely Krylov or K-complexity. For this purpose we work in the double-scaled SYK model which is dual in a certain limit to JT gravity, a theory of gravity in AdS$_2$. In particular, states on the boundary have a clear geometrical definition in the bulk. We use this result to show that Krylov complexity of the infinite-temperature thermofield double state on the boundary of AdS$_2$ has a precise bulk description in JT gravity, namely the length of the two-sided wormhole. We do this by showing that the Krylov basis elements, which are eigenstates of the Krylov complexity operator, are mapped to length eigenstates in the bulk theory by subjecting K-complexity to the bulk-boundary map identifying the bulk/boundary Hilbert spaces. Our result makes extensive use of chord diagram techniques and identifies the Krylov basis of the boundary quantum system with fixed chord number states building the bulk gravitational Hilbert space.

Citations (38)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 2 likes.

Upgrade to Pro to view all of the tweets about this paper: