Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Ces`aro-like operator on some analytic function spaces (2305.03333v1)

Published 5 May 2023 in math.FA

Abstract: Let $\mu$ be a finite positive Borel measure on the interval $[0, 1)$ and $f(z)=\sum_{n=0}{\infty}a_{n}z{n} \in H(\mathbb{D})$. The Ces`aro-like operator is defined by $$ \mathcal {C}{\mu} (f)(z)=\sum\infty{n=0}\left(\mu_n\sumn_{k=0}a_k\right)zn, \ z\in \mathbb{D}, $$ where, for $n\geq 0$, $\mu_n$ denotes the $n$-th moment of the measure $\mu$, that is, $\mu_n=\int_{[0, 1)} t{n}d\mu(t)$. Let $X$ and $Y$ be subspaces of $H( \mathbb{D})$, the purpose of this paper is to study the action of $\mathcal {C}_{\mu}$ on distinct pairs $(X, Y)$. The spaces considered in this paper are Hardy space $H{p}(0<p\leq\infty)$, Morrey space $L{2,\lambda}(0<\lambda\leq1)$, mean Lipschitz space, Bloch type space, etc.

Summary

We haven't generated a summary for this paper yet.