Papers
Topics
Authors
Recent
2000 character limit reached

Universal monodromic tilting sheaves

Published 4 May 2023 in math.RT | (2305.03033v6)

Abstract: Let $G$ be a complex adjoint reductive group and $R$ be the group ring of the coweight lattice. We construct the universal monodromic big tilting sheaf on base affine space and show that its endomorphisms are $R \otimes_{RW} R$. Our arguments are self contained, so formal completion implies a short new proof of Soergel's prounipotent endomorphismensatz with arbitrary field coefficients. We give a Soergel bimodules description of the universal monodromic Hecke category and deduce a conjecture of Eberhardt that uncompletes Koszul duality.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (17)
  1. The stack of local systems with restricted variation and geometric Langlands theory with nilpotent singular support. arXiv:2010.01906, 2020.
  2. Faisceaux pervers. Astérisque, 100(1), 1982.
  3. Tilting exercises. Moscow Math Journal, pages 547–557, 2004.
  4. Schubert cells and cohomology of the spaces G/P. Russian Mathematical Surveys, 28(3):1, 1973.
  5. Koszul duality patterns in representation theory. Journal of the American Mathematical Society, 9(2):473–527, 1996.
  6. A topological approach to Soergel theory. In Representation Theory and Algebraic Geometry: A Conference Celebrating the Birthdays of Sasha Beilinson and Victor Ginzburg, pages 267–343. Springer, 2021.
  7. On Koszul duality for Kac-Moody groups. Representation Theory of the American Mathematical Society, 17(1):1–98, 2013.
  8. Quantum K-theoretic geometric Satake: the SL(n) case. Compositio Mathematica, 154(2):275–327, 2018.
  9. Jens Niklas Eberhardt. K-theory Soergel bimodules. arXiv:2208.01665, 2022.
  10. Ben Elias. Quantum Satake in type A. Part I. J. Comb. Algebra, 1(1):63–125, 2017.
  11. Dennis Gaitsgory. Twisted Whittaker model and factorizable sheaves. Selecta Mathematica, 13:617–659, 2008.
  12. Equivariant cohomology, Koszul duality, and the localization theorem. Inventiones mathematicae, 131(1):25–84, 1998.
  13. Sheaves on Manifolds, volume 292 of Grundlehren der mathematischen Wissenschaften. Springer, 1990.
  14. Hideyuki Matsumura. Commutative algebra, volume 120. WA Benjamin New York, 1970.
  15. Wolfgang Soergel. Kategorie O, perverse garben und moduln über den koinvarianten zur Weylgruppe. Journal of the American Mathematical Society, 3(2):421–445, 1990.
  16. Wolfgang Soergel. Kazhdan-Lusztig-polynome und unzerlegbare bimoduln über polynomringen. Journal of the Institute of Mathematics of Jussieu, 6(3):501–525, 2007.
  17. Robert Steinberg. On a theorem of Pittie. Topology, 14(2):173–177, 1975.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.