Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The universal monodromic Arkhipov--Bezrukavnikov equivalence (2501.14156v1)

Published 24 Jan 2025 in math.RT and math.AG

Abstract: We identify equivariant quasicoherent sheaves on the Grothendieck alteration of a reductive group $\mathsf{G}$ with universal monodromic Iwahori--Whittaker sheaves on the enhanced affine flag variety of the Langlands dual group $G$. This extends a similar result for equivariant quasicoherent sheaves on the Springer resolution due to Arkhipov--Bezrukavnikov. We further give a monoidal identification between adjoint equivariant coherent sheaves on the group $\mathsf{G}$ itself and bi-Iwahori--Whittaker sheaves on the loop group of $G$. These results are used in the sequel to this paper to prove the tame local Betti geometric Langlands conjecture of Ben-Zvi--Nadler. Our proof of fully faithfulness provides an alternative to the argument of Arkhipov--Bezrukavnikov. Namely, while they localize in unipotent directions, we localize in semi-simple directions, thereby reducing fully faithfulness to an order of vanishing calculation in semi-simple rank one.

Summary

We haven't generated a summary for this paper yet.