Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SuperNeuro: A Fast and Scalable Simulator for Neuromorphic Computing (2305.02510v1)

Published 4 May 2023 in cs.NE and cs.ET

Abstract: In many neuromorphic workflows, simulators play a vital role for important tasks such as training spiking neural networks (SNNs), running neuroscience simulations, and designing, implementing and testing neuromorphic algorithms. Currently available simulators are catered to either neuroscience workflows (such as NEST and Brian2) or deep learning workflows (such as BindsNET). While the neuroscience-based simulators are slow and not very scalable, the deep learning-based simulators do not support certain functionalities such as synaptic delay that are typical of neuromorphic workloads. In this paper, we address this gap in the literature and present SuperNeuro, which is a fast and scalable simulator for neuromorphic computing, capable of both homogeneous and heterogeneous simulations as well as GPU acceleration. We also present preliminary results comparing SuperNeuro to widely used neuromorphic simulators such as NEST, Brian2 and BindsNET in terms of computation times. We demonstrate that SuperNeuro can be approximately 10--300 times faster than some of the other simulators for small sparse networks. On large sparse and large dense networks, SuperNeuro can be approximately 2.2 and 3.4 times faster than the other simulators respectively.

Citations (2)

Summary

We haven't generated a summary for this paper yet.