Papers
Topics
Authors
Recent
Search
2000 character limit reached

Contextual Reasoning for Scene Generation (Technical Report)

Published 3 May 2023 in cs.AI and cs.LO | (2305.02255v1)

Abstract: We present a continuation to our previous work, in which we developed the MR-CKR framework to reason with knowledge overriding across contexts organized in multi-relational hierarchies. Reasoning is realized via ASP with algebraic measures, allowing for flexible definitions of preferences. In this paper, we show how to apply our theoretical work to real autonomous-vehicle scene data. Goal of this work is to apply MR-CKR to the problem of generating challenging scenes for autonomous vehicle learning. In practice, most of the scene data for AV learning models common situations, thus it might be difficult to capture cases where a particular situation occurs (e.g. partial occlusions of a crossing pedestrian). The MR-CKR model allows for data organization exploiting the multi-dimensionality of such data (e.g., temporal and spatial). Reasoning over multiple contexts enables the verification and configuration of scenes, using the combination of different scene ontologies. We describe a framework for semantically guided data generation, based on a combination of MR-CKR and Algebraic Measures. The framework is implemented in a proof-of-concept prototype exemplifying some cases of scene generation.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.