Papers
Topics
Authors
Recent
Search
2000 character limit reached

A Practical and Economical Bayesian Approach to Gas Price Prediction

Published 29 Apr 2023 in stat.AP and cs.CE | (2305.00337v1)

Abstract: On the Ethereum network, it is challenging to determine a gas price that ensures a transaction will be included in a block within a user's required timeline without overpaying. One way of addressing this problem is through the use of gas price oracles that utilize historical block data to recommend gas prices. However, when transaction volumes increase rapidly, these oracles often underestimate or overestimate the price. In this paper, we demonstrate how Gaussian process models can predict the distribution of the minimum price in an upcoming block when transaction volumes are increasing. This is effective because these processes account for time correlations between blocks. We performed an empirical analysis using the Gaussian process model on historical block data and compared the performance with GasStation-Express and Geth gas price oracles. The results suggest that when transactions volumes fluctuate greatly, the Gaussian process model offers a better estimation. Further, we demonstrated that GasStation-Express and Geth can be improved upon by using a smaller training sample size which is properly pre-processed. Based on the results of empirical analysis, we recommended a gas price oracle made up of a hybrid model consisting of both the Gaussian process and GasStation-Express. This oracle provides efficiency, accuracy, and better cost.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.