Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Polyp-SAM: Transfer SAM for Polyp Segmentation (2305.00293v1)

Published 29 Apr 2023 in eess.IV and cs.CV

Abstract: Colon polyps are considered important precursors for colorectal cancer. Automatic segmentation of colon polyps can significantly reduce the misdiagnosis of colon cancer and improve physician annotation efficiency. While many methods have been proposed for polyp segmentation, training large-scale segmentation networks with limited colonoscopy data remains a challenge. Recently, the Segment Anything Model (SAM) has recently gained much attention in both natural and medical image segmentation. SAM demonstrates superior performance in several image benchmarks and therefore shows great potential for medical image segmentation. In this study, we propose Poly-SAM, a finetuned SAM model for polyp segmentation, and compare its performance to several state-of-the-art polyp segmentation models. We also compare two transfer learning strategies of SAM with and without finetuning its encoders. Evaluated on five public datasets, our Polyp-SAM achieves state-of-the-art performance on two datasets and impressive performance on three datasets, with dice scores all above 88%. This study demonstrates the great potential of adapting SAM to medical image segmentation tasks. We plan to release the code and model weights for this paper at: https://github.com/ricklisz/Polyp-SAM.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Yuheng Li (37 papers)
  2. Mingzhe Hu (17 papers)
  3. Xiaofeng Yang (154 papers)
Citations (56)
Github Logo Streamline Icon: https://streamlinehq.com