Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quality-Adaptive Split-Federated Learning for Segmenting Medical Images with Inaccurate Annotations (2304.14976v1)

Published 28 Apr 2023 in cs.CV, cs.LG, and eess.IV

Abstract: SplitFed Learning, a combination of Federated and Split Learning (FL and SL), is one of the most recent developments in the decentralized machine learning domain. In SplitFed learning, a model is trained by clients and a server collaboratively. For image segmentation, labels are created at each client independently and, therefore, are subject to clients' bias, inaccuracies, and inconsistencies. In this paper, we propose a data quality-based adaptive averaging strategy for SplitFed learning, called QA-SplitFed, to cope with the variation of annotated ground truth (GT) quality over multiple clients. The proposed method is compared against five state-of-the-art model averaging methods on the task of learning human embryo image segmentation. Our experiments show that all five baseline methods fail to maintain accuracy as the number of corrupted clients increases. QA-SplitFed, however, copes effectively with corruption as long as there is at least one uncorrupted client.

Citations (4)

Summary

We haven't generated a summary for this paper yet.