Papers
Topics
Authors
Recent
Search
2000 character limit reached

The Exponential Capacity of Dense Associative Memories

Published 28 Apr 2023 in cond-mat.dis-nn, cs.IT, and math.IT | (2304.14964v4)

Abstract: Recent generalizations of the Hopfield model of associative memories are able to store a number $P$ of random patterns that grows exponentially with the number $N$ of neurons, $P=\exp(\alpha N)$. Besides the huge storage capacity, another interesting feature of these networks is their connection to the attention mechanism which is part of the Transformer architectures widely applied in deep learning. In this work, we study a generic family of pattern ensembles using a statistical mechanics analysis which gives exact asymptotic thresholds for the retrieval of a typical pattern, $\alpha_1$, and lower bounds for the maximum of the load $\alpha$ for which all patterns can be retrieved, $\alpha_c$, as well as sizes of attraction basins. We discuss in detail the cases of Gaussian and spherical patterns, and show that they display rich and qualitatively different phase diagrams.

Citations (30)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 17 likes about this paper.