Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Pattern-recalling processes in quantum Hopfield networks far from saturation (1103.3787v1)

Published 19 Mar 2011 in cond-mat.dis-nn, cs.LG, and physics.bio-ph

Abstract: As a mathematical model of associative memories, the Hopfield model was now well-established and a lot of studies to reveal the pattern-recalling process have been done from various different approaches. As well-known, a single neuron is itself an uncertain, noisy unit with a finite unnegligible error in the input-output relation. To model the situation artificially, a kind of 'heat bath' that surrounds neurons is introduced. The heat bath, which is a source of noise, is specified by the 'temperature'. Several studies concerning the pattern-recalling processes of the Hopfield model governed by the Glauber-dynamics at finite temperature were already reported. However, we might extend the 'thermal noise' to the quantum-mechanical variant. In this paper, in terms of the stochastic process of quantum-mechanical Markov chain Monte Carlo method (the quantum MCMC), we analytically derive macroscopically deterministic equations of order parameters such as 'overlap' in a quantum-mechanical variant of the Hopfield neural networks (let us call "quantum Hopfield model" or "quantum Hopfield networks"). For the case in which non-extensive number $p$ of patterns are embedded via asymmetric Hebbian connections, namely, $p/N \to 0$ for the number of neuron $N \to \infty$ ('far from saturation'), we evaluate the recalling processes for one of the built-in patterns under the influence of quantum-mechanical noise.

Citations (17)

Summary

We haven't generated a summary for this paper yet.