Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 68 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Continued fractions using a Laguerre digraph interpretation of the Foata--Zeilberger bijection and its variants (2304.14487v2)

Published 27 Apr 2023 in math.CO

Abstract: In the combinatorial theory of continued fractions, the Foata--Zeilberger bijection and its variants have been extensively used to derive various continued fractions enumerating several (sometimes infinitely many) simultaneous statistics on permutations (combinatorial model for factorials) and D-permutations (combinatorial model for Genocchi and median Genocchi numbers). A Laguerre digraph is a digraph in which each vertex has in- and out-degrees $0$ or $1$. In this paper, we interpret the Foata--Zeilberger bijection in terms of Laguerre digraphs, which enables us to count cycles in permutations. Using this interpretation, we obtain Jacobi-type continued fractions for multivariate polynomials enumerating permutations, and also Thron-type and Stieltjes-type continued fractions for multivariate polynomials enumerating D-permutations, in both cases including the counting of cycles. This enables us to prove some conjectured continued fractions due to Sokal and Zeng (2022 Advances in Applied Mathematics) in the case of permutations, and Randrianarivony and Zeng (1996 Electronic Journal of Combinatorics) and Deb and Sokal (2024 Advances in Applied Mathematics) in the case of D-permutations.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube