Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-Task Learning Regression via Convex Clustering (2304.13342v1)

Published 26 Apr 2023 in stat.ME and stat.ML

Abstract: Multi-task learning (MTL) is a methodology that aims to improve the general performance of estimation and prediction by sharing common information among related tasks. In the MTL, there are several assumptions for the relationships and methods to incorporate them. One of the natural assumptions in the practical situation is that tasks are classified into some clusters with their characteristics. For this assumption, the group fused regularization approach performs clustering of the tasks by shrinking the difference among tasks. This enables us to transfer common information within the same cluster. However, this approach also transfers the information between different clusters, which worsens the estimation and prediction. To overcome this problem, we propose an MTL method with a centroid parameter representing a cluster center of the task. Because this model separates parameters into the parameters for regression and the parameters for clustering, we can improve estimation and prediction accuracy for regression coefficient vectors. We show the effectiveness of the proposed method through Monte Carlo simulations and applications to real data.

Citations (3)

Summary

We haven't generated a summary for this paper yet.