Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Developing a cost-effective emulator for groundwater flow modeling using deep neural operators (2304.12299v1)

Published 5 Mar 2023 in physics.flu-dyn and cs.CE

Abstract: Current groundwater models face a significant challenge in their implementation due to heavy computational burdens. To overcome this, our work proposes a cost-effective emulator that efficiently and accurately forecasts the impact of abstraction in an aquifer. Our approach uses a deep neural operator (DeepONet) to learn operators that map between infinite-dimensional function spaces via deep neural networks. The goal is to infer the distribution of hydraulic head in a confined aquifer in the presence of a pumping well. We successfully tested the DeepONet on four problems, including two forward problems, an inverse analysis, and a nonlinear system. Additionally, we propose a novel extension of the DeepONet-based architecture to generate accurate predictions for varied hydraulic conductivity fields and pumping well locations that are unseen during training. Our emulator's predictions match the target data with excellent performance, demonstrating that the proposed model can act as an efficient and fast tool to support a range of tasks that require repetitive forward numerical simulations or inverse simulations of groundwater flow problems. Overall, our work provides a promising avenue for developing cost-effective and accurate groundwater models.

Citations (6)

Summary

We haven't generated a summary for this paper yet.