Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Advancing underwater acoustic target recognition via adaptive data pruning and smoothness-inducing regularization (2304.11907v1)

Published 24 Apr 2023 in cs.LG, cs.SD, and eess.AS

Abstract: Underwater acoustic recognition for ship-radiated signals has high practical application value due to the ability to recognize non-line-of-sight targets. However, due to the difficulty of data acquisition, the collected signals are scarce in quantity and mainly composed of mechanical periodic noise. According to the experiments, we observe that the repeatability of periodic signals leads to a double-descent phenomenon, which indicates a significant local bias toward repeated samples. To address this issue, we propose a strategy based on cross-entropy to prune excessively similar segments in training data. Furthermore, to compensate for the reduction of training data, we generate noisy samples and apply smoothness-inducing regularization based on KL divergence to mitigate overfitting. Experiments show that our proposed data pruning and regularization strategy can bring stable benefits and our framework significantly outperforms the state-of-the-art in low-resource scenarios.

Citations (2)

Summary

We haven't generated a summary for this paper yet.