Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Robust Calibrate Proxy Loss for Deep Metric Learning (2304.09162v1)

Published 6 Apr 2023 in cs.IR and cs.LG

Abstract: The mainstream researche in deep metric learning can be divided into two genres: proxy-based and pair-based methods. Proxy-based methods have attracted extensive attention due to the lower training complexity and fast network convergence. However, these methods have limitations as the poxy optimization is done by network, which makes it challenging for the proxy to accurately represent the feature distrubtion of the real class of data. In this paper, we propose a Calibrate Proxy (CP) structure, which uses the real sample information to improve the similarity calculation in proxy-based loss and introduces a calibration loss to constraint the proxy optimization towards the center of the class features. At the same time, we set a small number of proxies for each class to alleviate the impact of intra-class differences on retrieval performance. The effectiveness of our method is evaluated by extensive experiments on three public datasets and multiple synthetic label-noise datasets. The results show that our approach can effectively improve the performance of commonly used proxy-based losses on both regular and noisy datasets.

Citations (1)

Summary

We haven't generated a summary for this paper yet.