Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Privacy-Preserving Matrix Factorization for Recommendation Systems using Gaussian Mechanism (2304.09096v1)

Published 11 Apr 2023 in cs.IR, cs.CR, cs.LG, and stat.ML

Abstract: Building a recommendation system involves analyzing user data, which can potentially leak sensitive information about users. Anonymizing user data is often not sufficient for preserving user privacy. Motivated by this, we propose a privacy-preserving recommendation system based on the differential privacy framework and matrix factorization, which is one of the most popular algorithms for recommendation systems. As differential privacy is a powerful and robust mathematical framework for designing privacy-preserving machine learning algorithms, it is possible to prevent adversaries from extracting sensitive user information even if the adversary possesses their publicly available (auxiliary) information. We implement differential privacy via the Gaussian mechanism in the form of output perturbation and release user profiles that satisfy privacy definitions. We employ R\'enyi Differential Privacy for a tight characterization of the overall privacy loss. We perform extensive experiments on real data to demonstrate that our proposed algorithm can offer excellent utility for some parameter choices, while guaranteeing strict privacy.

Summary

We haven't generated a summary for this paper yet.