Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dimension-free mixing times of Gibbs samplers for Bayesian hierarchical models (2304.06993v2)

Published 14 Apr 2023 in stat.CO, math.ST, stat.ML, and stat.TH

Abstract: Gibbs samplers are popular algorithms to approximate posterior distributions arising from Bayesian hierarchical models. Despite their popularity and good empirical performances, however, there are still relatively few quantitative results on their convergence properties, e.g. much less than for gradient-based sampling methods. In this work we analyse the behaviour of total variation mixing times of Gibbs samplers targeting hierarchical models using tools from Bayesian asymptotics. We obtain dimension-free convergence results under random data-generating assumptions, for a broad class of two-level models with generic likelihood function. Specific examples with Gaussian, binomial and categorical likelihoods are discussed.

Citations (4)

Summary

We haven't generated a summary for this paper yet.