Papers
Topics
Authors
Recent
Search
2000 character limit reached

End-to-end Manipulator Calligraphy Planning via Variational Imitation Learning

Published 6 Apr 2023 in cs.RO and cs.AI | (2304.02801v1)

Abstract: Planning from demonstrations has shown promising results with the advances of deep neural networks. One of the most popular real-world applications is automated handwriting using a robotic manipulator. Classically it is simplified as a two-dimension problem. This representation is suitable for elementary drawings, but it is not sufficient for Japanese calligraphy or complex work of art where the orientation of a pen is part of the user expression. In this study, we focus on automated planning of Japanese calligraphy using a three-dimension representation of the trajectory as well as the rotation of the pen tip, and propose a novel deep imitation learning neural network that learns from expert demonstrations through a combination of images and pose data. The network consists of a combination of variational auto-encoder, bi-directional LSTM, and Multi-Layer Perceptron (MLP). Experiments are conducted in a progressive way, and results demonstrate that the proposed approach is successful in completion of tasks for real-world robots, overcoming the distribution shift problem in imitation learning. The source code and dataset will be public.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.