Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Graph Representation Learning for Interactive Biomolecule Systems (2304.02656v1)

Published 5 Apr 2023 in q-bio.QM and cs.LG

Abstract: Advances in deep learning models have revolutionized the study of biomolecule systems and their mechanisms. Graph representation learning, in particular, is important for accurately capturing the geometric information of biomolecules at different levels. This paper presents a comprehensive review of the methodologies used to represent biological molecules and systems as computer-recognizable objects, such as sequences, graphs, and surfaces. Moreover, it examines how geometric deep learning models, with an emphasis on graph-based techniques, can analyze biomolecule data to enable drug discovery, protein characterization, and biological system analysis. The study concludes with an overview of the current state of the field, highlighting the challenges that exist and the potential future research directions.

Summary

We haven't generated a summary for this paper yet.