Papers
Topics
Authors
Recent
2000 character limit reached

A differentiable programming framework for spin models (2304.01772v2)

Published 4 Apr 2023 in cond-mat.stat-mech and cs.LG

Abstract: We introduce a novel framework for simulating spin models using differentiable programming, an approach that leverages the advancements in machine learning and computational efficiency. We focus on three distinct spin systems: the Ising model, the Potts model, and the Cellular Potts model, demonstrating the practicality and scalability of our framework in modeling these complex systems. Additionally, this framework allows for the optimization of spin models, which can adjust the parameters of a system by a defined objective function. In order to simulate these models, we adapt the Metropolis-Hastings algorithm to a differentiable programming paradigm, employing batched tensors for simulating spin lattices. This adaptation not only facilitates the integration with existing deep learning tools but also significantly enhances computational speed through parallel processing capabilities, as it can be implemented on different hardware architectures, including GPUs and TPUs.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.