Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Evidence of off-shell Higgs boson production from $ZZ$ leptonic decay channels and constraints on its total width with the ATLAS detector (2304.01532v3)

Published 4 Apr 2023 in hep-ex

Abstract: This Letter reports on a search for off-shell production of the Higgs boson using 139 $\textrm{fb}{-1}$ of $pp$ collision data at $\sqrt{s}=$ 13 TeV collected by the ATLAS detector at the Large Hadron Collider. The signature is a pair of $Z$ bosons, with contributions from both the production and subsequent decay of a virtual Higgs boson and the interference of that process with other processes. The two observable final states are $ZZ\rightarrow 4\ell$ and $ZZ\rightarrow 2\ell2\nu$ with $\ell = e$ or $\mu$. In the $ZZ\rightarrow 4\ell$ final state, a dense Neural Network is used to enhance analysis sensitivity with respect to matrix element-based discrimination. The background-only hypothesis is rejected with an observed (expected) significance of 3.3 (2.2) standard deviations, representing experimental evidence for off-shell Higgs boson production. Assuming that no new particles enter the production of the virtual Higgs boson, its total width can be deduced from the measurement of its off-shell production cross-section. The measured total width of the Higgs boson is $4.4{+3.0}_{-2.2}$ MeV, and the observed (expected) upper limit on the total width is found to be 10.1 (10.8) MeV at 95% confidence level.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (92)
  1. ATLAS Collaboration “Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC” In Phys. Lett. B 716, 2012, pp. 1 DOI: 10.1016/j.physletb.2012.08.020
  2. CMS Collaboration “Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC” In Phys. Lett. B 716, 2012, pp. 30 DOI: 10.1016/j.physletb.2012.08.021
  3. ATLAS Collaboration “A detailed map of Higgs boson interactions by the ATLAS experiment ten years after the discovery” In Nature 607, 2022, pp. 52–59 DOI: 10.1038/s41586-022-04893-w
  4. CMS Collaboration “A portrait of the Higgs boson by the CMS experiment ten years after the discovery” In Nature 607, 2022, pp. 60–68 DOI: 10.1038/s41586-022-04892-x
  5. LHC Higgs Cross Section Working Group “Handbook of LHC Higgs Cross Sections: 4. Deciphering the Nature of the Higgs Sector”, 2016 DOI: 10.23731/CYRM-2017-002
  6. “Inadequacy of zero-width approximation for a light Higgs boson signal” In JHEP 08, 2012, pp. 116 DOI: 10.1007/JHEP08(2012)116
  7. “Constraining the Higgs boson width with ZZ production at the LHC” In Phys. Rev. D 88, 2013, pp. 054024 DOI: 10.1103/PhysRevD.88.054024
  8. John M. Campbell, R.Keith Ellis and Ciaran Williams “Bounding the Higgs width at the LHC using full analytic results for g⁢g→e−⁢e+⁢μ−⁢μ+→𝑔𝑔superscript𝑒superscript𝑒superscript𝜇superscript𝜇gg\to e^{-}e^{+}\mu^{-}\mu^{+}italic_g italic_g → italic_e start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_μ start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT italic_μ start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT” In JHEP 04, 2014, pp. 060 DOI: 10.1007/JHEP04(2014)060
  9. John M. Campbell, R.Keith Ellis and Ciaran Williams “Bounding the Higgs width at the LHC: Complementary results from H→W⁢W→𝐻𝑊𝑊H\to WWitalic_H → italic_W italic_W” In Phys. Rev. D 89, 2014, pp. 053011 DOI: 10.1103/PhysRevD.89.053011
  10. “Limitations and opportunities of off-shell coupling measurements” In Phys. Rev. D 90, 2014, pp. 053003 DOI: 10.1103/PhysRevD.90.053003
  11. “Higgs Couplings: Disentangling New Physics with Off-Shell Measurements” In Phys. Rev. Lett. 113, 2014, pp. 201802 DOI: 10.1103/PhysRevLett.113.201802
  12. “Taming the off-shell Higgs boson” In J. Exp. Theor. Phys. 120, 2015, pp. 354–368 DOI: 10.1134/S1063776115030140
  13. Margherita Ghezzi, Giampiero Passarino and Sandro Uccirati “Bounding the Higgs Width Using Effective Field Theory” In PoS LL2014 072, 2014 DOI: 10.22323/1.211.0072
  14. “Mass effects in the Higgs-gluon coupling: boosted vs off-shell production” In JHEP 02, 2015, pp. 038 DOI: 10.1007/JHEP02(2015)038
  15. “Beyond geolocating: Constraining higher dimensional operators in H→4⁢ℓ→𝐻4ℓH\to 4\ellitalic_H → 4 roman_ℓ with off-shell production and more” In Phys. Rev. D 91.3, 2015, pp. 035011 DOI: 10.1103/PhysRevD.91.035011
  16. Christoph Englert, Yotam Soreq and Michael Spannowsky “Off-shell Higgs coupling measurements in BSM scenarios” In JHEP 05, 2015, pp. 145 DOI: 10.1007/JHEP05(2015)145
  17. Dorival Goncalves, Tao Han and Satyanarayan Mukhopadhyay “Off-Shell Higgs Probe of Naturalness” In Phys. Rev. Lett. 120.11, 2018, pp. 111801 DOI: 10.1103/PhysRevLett.120.111801
  18. “Off-shell Higgs couplings in H*→Z⁢Z→ℓ⁢ℓ⁢ν⁢ν→superscript𝐻𝑍𝑍→ℓℓ𝜈𝜈H^{*}\to ZZ\to\ell\ell\nu\nuitalic_H start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT → italic_Z italic_Z → roman_ℓ roman_ℓ italic_ν italic_ν” In Phys. Lett. B 817, 2021, pp. 136329 DOI: 10.1016/j.physletb.2021.136329
  19. Seung J. Lee, Myeonghun Park and Zhuoni Qian “Probing unitarity violation in the tail of the off-shell Higgs boson in VL⁢VLsubscript𝑉𝐿subscript𝑉𝐿V_{L}V_{L}italic_V start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT italic_V start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT mode” In Phys. Rev. D 100.1, 2019, pp. 011702 DOI: 10.1103/PhysRevD.100.011702
  20. Hua-Rong He, Xia Wan and You-Kai Wang “Anomalous H→Z⁢Z→4⁢ℓ→𝐻𝑍𝑍→4ℓH\to ZZ\to 4\ellitalic_H → italic_Z italic_Z → 4 roman_ℓ decay and its interference effects on gluon–gluon contribution at the LHC” In Chin. Phys. C 44.12, 2020, pp. 123101 DOI: 10.1088/1674-1137/abb4c8
  21. “Off-shell Higgs production at the LHC as a probe of the trilinear Higgs coupling” In JHEP 02, 2022, pp. 030 DOI: 10.1007/JHEP02(2022)030
  22. Maximilian Ruhdorfer, Ennio Salvioni and Andreas Weiler “A Global View of the Off-Shell Higgs Portal” In SciPost Phys. 8, 2020, pp. 027 DOI: 10.21468/SciPostPhys.8.2.027
  23. ATLAS Collaboration “Constraints on the off-shell Higgs boson signal strength in the high-mass Z⁢Z𝑍𝑍ZZitalic_Z italic_Z and W⁢W𝑊𝑊WWitalic_W italic_W final states with the ATLAS detector” In Eur. Phys. J. C 75, 2015, pp. 335 DOI: 10.1140/epjc/s10052-015-3542-2
  24. CMS Collaboration “Constraints on the Higgs boson width from off-shell production and decay to Z𝑍Zitalic_Z-boson pairs” In Phys. Lett. B 736, 2014, pp. 64 DOI: 10.1016/j.physletb.2014.06.077
  25. CMS Collaboration “Limits on the Higgs boson lifetime and width from its decay to four charged leptons” In Phys. Rev. D 92, 2015, pp. 072010 DOI: 10.1103/PhysRevD.92.072010
  26. CMS Collaboration “Search for Higgs boson off-shell production in proton–proton collisions at 7 and 8⁢TeV8TeV8\,\text{TeV}8 TeV and derivation of constraints on its total decay width” In JHEP 09, 2016, pp. 051 DOI: 10.1007/JHEP09(2016)051
  27. ATLAS Collaboration “Constraints on off-shell Higgs boson production and the Higgs boson total width in Z⁢Z→4⁢ℓ→𝑍𝑍4ℓZZ\rightarrow 4\ellitalic_Z italic_Z → 4 roman_ℓ and Z⁢Z→2⁢ℓ⁢2⁢ν→𝑍𝑍2ℓ2𝜈ZZ\rightarrow 2\ell 2\nuitalic_Z italic_Z → 2 roman_ℓ 2 italic_ν final states with the ATLAS detector” In Phys. Lett. B 786, 2018, pp. 223 DOI: 10.1016/j.physletb.2018.09.048
  28. CMS Collaboration “Measurements of the Higgs boson width and anomalous H⁢V⁢V𝐻𝑉𝑉HVVitalic_H italic_V italic_V couplings from on-shell and off-shell production in the four-lepton final state” In Phys. Rev. D 99, 2019, pp. 112003 DOI: 10.1103/PhysRevD.99.112003
  29. CMS Collaboration “Measurement of the Higgs boson width and evidence of its off-shell contributions to ZZ production” In Nature Phys. 18.11, 2022, pp. 1329–1334 DOI: 10.1038/s41567-022-01682-0
  30. S. Schael “Precision electroweak measurements on the Z𝑍Zitalic_Z resonance” In Phys. Rept. 427, 2006, pp. 257–454 DOI: 10.1016/j.physrep.2005.12.006
  31. ATLAS Collaboration “Measurements of the Higgs boson inclusive and differential fiducial cross sections in the 4⁢ℓ4ℓ4\ell4 roman_ℓ decay channel at s=13⁢TeV𝑠13TeV\sqrt{s}=13\,\text{TeV}square-root start_ARG italic_s end_ARG = 13 TeV” In Eur. Phys. J. C 80, 2020, pp. 942 DOI: 10.1140/epjc/s10052-020-8223-0
  32. ATLAS Collaboration “The ATLAS Experiment at the CERN Large Hadron Collider” In JINST 3, 2008, pp. S08003 DOI: 10.1088/1748-0221/3/08/S08003
  33. ATLAS Collaboration “ATLAS Insertable B-Layer Technical Design Report”, CERN-LHCC-2010-013, ATLAS-TDR-19, 2010 URL: https://cds.cern.ch/record/1291633
  34. ATLAS Collaboration “Performance of the ATLAS Trigger System in 2015” In Eur. Phys. J. C 77.5, 2017, pp. 317 DOI: 10.1140/epjc/s10052-017-4852-3
  35. ATLAS Collaboration “The ATLAS Collaboration Software and Firmware”, ATL-SOFT-PUB-2021-001, 2021 URL: https://cds.cern.ch/record/2767187
  36. ATLAS Collaboration “The ATLAS Simulation Infrastructure” In Eur. Phys. J. C 70, 2010, pp. 823 DOI: 10.1140/epjc/s10052-010-1429-9
  37. S. Agostinelli “GEANT4: A simulation toolkit” In Nucl. Instrum. Meth. A 506, 2003, pp. 250–303 DOI: 10.1016/S0168-9002(03)01368-8
  38. Torbjorn Sjöstrand, Stephen Mrenna and Peter Z. Skands “A brief introduction to PYTHIA 8.1” In Comput. Phys. Commun. 178, 2008, pp. 852–867 DOI: 10.1016/j.cpc.2008.01.036
  39. Enrico Bothmann “Event generation with Sherpa 2.2” In SciPost Phys. 7.3, 2019, pp. 034 DOI: 10.21468/SciPostPhys.7.3.034
  40. “OpenLoops 2” In Eur. Phys. J. C 79.10, 2019, pp. 866 DOI: 10.1140/epjc/s10052-019-7306-2
  41. Fabio Cascioli, Philipp Maieröfer and Stefano Pozzorini “Scattering Amplitudes with Open Loops” In Phys. Rev. Lett. 108, 2012, pp. 111601 DOI: 10.1103/PhysRevLett.108.111601
  42. Ansgar Denner, Stefan Dittmaier and Lars Hofer “Collier: A fortran-based complex one-loop library in extended regularizations” In Comput. Phys. Commun. 212, 2017, pp. 220–238 DOI: 10.1016/j.cpc.2016.10.013
  43. Richard D. Ball “Parton distributions for the LHC Run II” In JHEP 04, 2015, pp. 040 DOI: 10.1007/JHEP04(2015)040
  44. “Precise Higgs-background predictions: merging NLO QCD and squared quark-loop corrections to four-lepton + 0,1 jet production” In JHEP 01, 2014, pp. 046 DOI: 10.1007/JHEP01(2014)046
  45. “QCD corrections to Z⁢Z𝑍𝑍ZZitalic_Z italic_Z production in gluon fusion at the LHC” In Phys. Rev. D 92, 2015, pp. 18 DOI: 10.1103/PhysRevD.92.094028
  46. “QCD corrections to vector boson pair production in gluon fusion including interference effects with off-shell Higgs at the LHC” In JHEP 07, 2016, pp. 087 DOI: 10.1007/JHEP07(2016)087
  47. Giampiero Passarino “Higgs CAT” In Eur. Phys. J. C 74, 2014, pp. 2866 DOI: 10.1140/epjc/s10052-014-2866-7
  48. “Handbook of LHC Higgs Cross Sections: 4. Deciphering the nature of the Higgs sector” In CERN-2017-002-M, CERN, Geneva, 2016 DOI: 10.23731/CYRM-2017-002
  49. “Signal-background interference effects for g⁢g→H→W+⁢W−→𝑔𝑔𝐻→superscript𝑊superscript𝑊gg\rightarrow H\rightarrow{W}^{+}{W}^{-}italic_g italic_g → italic_H → italic_W start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_W start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT beyond leading order” In Phys. Rev. D 88 American Physical Society, 2013, pp. 034032 DOI: 10.1103/PhysRevD.88.034032
  50. “QCD corrections to W+W– production through gluon fusion” In Physics Letters B 754, 2016, pp. 275–280 DOI: https://doi.org/10.1016/j.physletb.2016.01.046
  51. “The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations” In JHEP 07, 2014, pp. 079 DOI: 10.1007/JHEP07(2014)079
  52. Richard D. Ball “Parton distributions with LHC data” In Nucl. Phys. B 867, 2013, pp. 244–289 DOI: 10.1016/j.nuclphysb.2012.10.003
  53. ATLAS Collaboration “ATLAS Pythia 8 tunes to 7⁢TeV7TeV7\leavevmode\nobreak\ \text{TeV}7 TeV data”, ATL-PHYS-PUB-2014-021, 2014 URL: https://cds.cern.ch/record/1966419
  54. “QCD matrix elements + parton showers. The NLO case” In JHEP 04, 2013, pp. 027 DOI: 10.1007/JHEP04(2013)027
  55. “Electroweak Corrections to p⁢p→μ+⁢μ−⁢e+⁢e−+X→𝑝𝑝superscript𝜇superscript𝜇superscript𝑒superscript𝑒𝑋pp\to\mu^{+}\mu^{-}e^{+}e^{-}+Xitalic_p italic_p → italic_μ start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_μ start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT + italic_X at the LHC: A Higgs Boson Background Study” In Phys. Rev. Lett. 116.16, 2016, pp. 161803 DOI: 10.1103/PhysRevLett.116.161803
  56. “Next-to-leading-order electroweak corrections to the production of four charged leptons at the LHC” In JHEP 01, 2017, pp. 033 DOI: 10.1007/JHEP01(2017)033
  57. “NLO QCD+EW predictions for 2⁢ℓ⁢2⁢ν2ℓ2𝜈2\ell 2\nu2 roman_ℓ 2 italic_ν diboson signatures at the LHC” In JHEP 11, 2017, pp. 120 DOI: 10.1007/JHEP11(2017)120
  58. “W+⁢W−superscript𝑊superscript𝑊W^{+}W^{-}italic_W start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_W start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT , W⁢Z𝑊𝑍WZitalic_W italic_Z and Z⁢Z𝑍𝑍ZZitalic_Z italic_Z production in the POWHEG-BOX-V2” In Eur. Phys. J. C 74.1, 2014, pp. 2702 DOI: 10.1140/epjc/s10052-013-2702-5
  59. “FEWZ 2.0: A code for hadronic Z production at next-to-next-to-leading order” In Comput. Phys. Commun. 182.11, 2011, pp. 2388–2403 DOI: 10.1016/j.cpc.2011.06.008
  60. “Top++: A Program for the Calculation of the Top-Pair Cross-Section at Hadron Colliders” In Comput. Phys. Commun. 185, 2014, pp. 2930 DOI: 10.1016/j.cpc.2014.06.021
  61. “HatHor for single top-quark production: Updated predictions and uncertainty estimates for single top-quark production in hadronic collisions” In Comput. Phys. Commun. 191, 2015, pp. 74–89 DOI: 10.1016/j.cpc.2015.02.001
  62. “HATHOR: HAdronic Top and Heavy quarks crOss section calculatoR” In Comput. Phys. Commun. 182, 2011, pp. 1034–1046 DOI: 10.1016/j.cpc.2010.12.040
  63. “Electroweak and QCD corrections to top-pair hadroproduction in association with heavy bosons” In JHEP 06, 2015, pp. 184 DOI: 10.1007/JHEP06(2015)184
  64. ATLAS Collaboration “Search for heavy resonances decaying into a pair of Z𝑍Zitalic_Z bosons in the ℓ+⁢ℓ−⁢ℓ′⁣+⁢ℓ′⁣−superscriptℓsuperscriptℓsuperscriptℓ′superscriptℓ′\ell^{+}\ell^{-}\ell^{\prime+}\ell^{\prime-}roman_ℓ start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT roman_ℓ start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT roman_ℓ start_POSTSUPERSCRIPT ′ + end_POSTSUPERSCRIPT roman_ℓ start_POSTSUPERSCRIPT ′ - end_POSTSUPERSCRIPT and ℓ+⁢ℓ−⁢ν⁢ν¯superscriptℓsuperscriptℓ𝜈¯𝜈\ell^{+}\ell^{-}\nu\bar{\nu}roman_ℓ start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT roman_ℓ start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT italic_ν over¯ start_ARG italic_ν end_ARG final states using 139⁢fb−1139superscriptfb1139\,\text{fb}^{-1}139 fb start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT of proton–proton collisions at s=13,TeV𝑠13TeV\sqrt{s}=13,\text{TeV}square-root start_ARG italic_s end_ARG = 13 , TeV with the ATLAS detector” In Eur. Phys. J. C 81, 2020, pp. 332 DOI: 10.1140/epjc/s10052-021-09013-y
  65. ATLAS Collaboration “Muon reconstruction performance of the ATLAS detector in proton–proton collision data at s=13⁢TeV𝑠13TeV\sqrt{s}=13\,\text{TeV}square-root start_ARG italic_s end_ARG = 13 TeV” In Eur. Phys. J. C 76, 2016, pp. 292 DOI: 10.1140/epjc/s10052-016-4120-y
  66. ATLAS Collaboration “Electron reconstruction and identification in the ATLAS experiment using the 2015 and 2016 LHC proton–proton collision data at s=13⁢TeV𝑠13TeV\sqrt{s}=13\,\text{TeV}square-root start_ARG italic_s end_ARG = 13 TeV” In Eur. Phys. J. C 79, 2019, pp. 639 DOI: 10.1140/epjc/s10052-019-7140-6
  67. ATLAS Collaboration “Jet reconstruction and performance using particle flow with the ATLAS Detector” In Eur. Phys. J. C 77.7, 2017, pp. 466 DOI: 10.1140/epjc/s10052-017-5031-2
  68. Matteo Cacciari, Gavin P. Salam and Gregory Soyez “The anti-ktsubscript𝑘𝑡k_{t}italic_k start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT jet clustering algorithm” In JHEP 04, 2008, pp. 063 DOI: 10.1088/1126-6708/2008/04/063
  69. Matteo Cacciari, Gavin P. Salam and Gregory Soyez “FastJet user manual” In Eur. Phys. J. C 72, 2012, pp. 1896 DOI: 10.1140/epjc/s10052-012-1896-2
  70. ATLAS Collaboration “Jet energy scale measurements and their systematic uncertainties in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV with the ATLAS detector” In Phys. Rev. D 96.7, 2017, pp. 072002 DOI: 10.1103/PhysRevD.96.072002
  71. ATLAS Collaboration “Performance of pile-up mitigation techniques for jets in p⁢p𝑝𝑝ppitalic_p italic_p collisions at s=8⁢TeV𝑠8TeV\sqrt{s}=8\,\text{TeV}square-root start_ARG italic_s end_ARG = 8 TeV using the ATLAS detector” In Eur. Phys. J. C 76, 2016, pp. 581 DOI: 10.1140/epjc/s10052-016-4395-z
  72. ATLAS Collaboration “Identification and rejection of pile-up jets at high pseudorapidity with the ATLAS detector” [Erratum: Eur.Phys.J.C 77, 712 (2017)] In Eur. Phys. J. C 77.9, 2017, pp. 580 DOI: 10.1140/epjc/s10052-017-5081-5
  73. ATLAS Collaboration “ATLAS b-jet identification performance and efficiency measurement with t⁢t¯𝑡¯𝑡t{\bar{t}}italic_t over¯ start_ARG italic_t end_ARG events in pp collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV” In Eur. Phys. J. C 79.11, 2019, pp. 970 DOI: 10.1140/epjc/s10052-019-7450-8
  74. “ATLAS flavour-tagging algorithms for the LHC Run 2 p⁢p𝑝𝑝ppitalic_p italic_p collision dataset”, 2022 arXiv:2211.16345 [physics.data-an]
  75. ATLAS Collaboration “Performance of missing transverse momentum reconstruction with the ATLAS detector in the first proton–proton collisions at s=13⁢TeV𝑠13TeV\sqrt{s}=13\leavevmode\nobreak\ \text{TeV}square-root start_ARG italic_s end_ARG = 13 TeV”, ATL-PHYS-PUB-2015-027, 2015 URL: https://cds.cern.ch/record/2037904
  76. ATLAS Collaboration “Object-based missing transverse momentum significance in the ATLAS Detector”, ATLAS-CONF-2018-038, 2018 URL: https://cds.cern.ch/record/2630948
  77. Francois Chollet “Keras” GitHub, 2015 URL: https://github.com/fchollet/keras
  78. “TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems” Software available from tensorflow.org, 2015 URL: https://www.tensorflow.org/
  79. ATLAS Collaboration “Evidence for the spin-0 nature of the Higgs boson using ATLAS data” In Phys. Lett. B 726, 2013, pp. 120 DOI: 10.1016/j.physletb.2013.08.026
  80. D. Rainwater, R. Szalapski and D. Zeppenfeld “Probing color-singlet exchange in Z+2𝑍2Z+2italic_Z + 2-jet events at the CERN LHC” In Phys. Rev. D 54 American Physical Society, 1996, pp. 6680–6689 DOI: 10.1103/PhysRevD.54.6680
  81. D. Florian “Handbook of LHC Higgs Cross Sections: 4. Deciphering the Nature of the Higgs Sector”, 2016 DOI: 10.23731/CYRM-2017-002
  82. Stefan Gieseke, Tobias Kasprzik and Johann H. Kühn “Vector-boson pair production and electroweak corrections in HERWIG++” In Eur. Phys. J. C 74.8, 2014, pp. 2988 DOI: 10.1140/epjc/s10052-014-2988-y
  83. “Neural conditional reweighting” In Phys. Rev. D 105.7, 2022, pp. 076015 DOI: 10.1103/PhysRevD.105.076015
  84. ATLAS Collaboration “Luminosity determination in p⁢p𝑝𝑝ppitalic_p italic_p collisions at s=13⁢TeV𝑠13TeV\sqrt{s}=13\,\text{TeV}square-root start_ARG italic_s end_ARG = 13 TeV using the ATLAS detector at the LHC”, ATLAS-CONF-2019-021, 2019 URL: https://cds.cern.ch/record/2677054
  85. G. Avoni “The new LUCID-2 detector for luminosity measurement and monitoring in ATLAS” In JINST 13.07, 2018, pp. P07017 DOI: 10.1088/1748-0221/13/07/P07017
  86. “Asymptotic formulae for likelihood-based tests of new physics” In Eur. Phys. J. C 71.2 Springer ScienceBusiness Media LLC, 2011 DOI: 10.1140/epjc/s10052-011-1554-0
  87. S.S. Wilks “The Large-Sample Distribution of the Likelihood Ratio for Testing Composite Hypotheses” In Annals Math. Statist. 9.1 Institute of Mathematical Statistics, 1938, pp. 60–62 DOI: 10.1214/aoms/1177732360
  88. J. Neyman “Outline of a Theory of Statistical Estimation Based on the Classical Theory of Probability” In Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences 236.767 The Royal Society, 1937, pp. 333–380
  89. ATLAS Collaboration “Higgs boson production cross-section measurements and their EFT interpretation in the 4⁢ℓ4ℓ4\ell4 roman_ℓ decay channel at s=13⁢TeV𝑠13TeV\sqrt{s}=13\,\text{TeV}square-root start_ARG italic_s end_ARG = 13 TeV with the ATLAS detector” In Eur. Phys. J. C 80, 2020, pp. 957 DOI: 10.1140/epjc/s10052-020-8227-9
  90. ATLAS Collaboration “ATLAS Computing Acknowledgements”, ATL-SOFT-PUB-2023-001, 2023 URL: https://cds.cern.ch/record/2869272
  91. ATLAS Collaboration In Eur. Phys. J. C 81, 2021, pp. 398 DOI: 10.1140/epjc/s10052-021-09116-6
  92. ATLAS Collaboration In Eur. Phys. J. C 81, 2021, pp. 29 DOI: 10.1140/epjc/s10052-020-08644-x
Citations (28)

Summary

We haven't generated a summary for this paper yet.