Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Neuro-Symbolic Execution of Generic Source Code (2304.00989v2)

Published 23 Mar 2023 in cs.AI and cs.LG

Abstract: Can a Python program be executed statement-by-statement by neural networks composed according to the source code? We formulate the Neuro-Symbolic Execution Problem and introduce Neural Interpretation (NI), the first neural model for the execution of generic source code that allows missing definitions. NI preserves source code structure, where every variable has a vector encoding, and every function executes a neural network. NI is a novel neural model of computers with a compiler architecture that can assemble neural layers "programmed" by source code. NI is the first neural model capable of executing Py150 dataset programs, including library functions without concrete inputs, and it can be trained with flexible code understanding objectives. We demonstrate white-box execution without concrete inputs for variable misuse localization and repair.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com