Papers
Topics
Authors
Recent
2000 character limit reached

Textile Pattern Generation Using Diffusion Models

Published 2 Apr 2023 in cs.CV | (2304.00520v1)

Abstract: The problem of text-guided image generation is a complex task in Computer Vision, with various applications, including creating visually appealing artwork and realistic product images. One popular solution widely used for this task is the diffusion model, a generative model that generates images through an iterative process. Although diffusion models have demonstrated promising results for various image generation tasks, they may only sometimes produce satisfactory results when applied to more specific domains, such as the generation of textile patterns based on text guidance. This study presents a fine-tuned diffusion model specifically trained for textile pattern generation by text guidance to address this issue. The study involves the collection of various textile pattern images and their captioning with the help of another AI model. The fine-tuned diffusion model is trained with this newly created dataset, and its results are compared with the baseline models visually and numerically. The results demonstrate that the proposed fine-tuned diffusion model outperforms the baseline models in terms of pattern quality and efficiency in textile pattern generation by text guidance. This study presents a promising solution to the problem of text-guided textile pattern generation and has the potential to simplify the design process within the textile industry.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.