Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Extracting Thyroid Nodules Characteristics from Ultrasound Reports Using Transformer-based Natural Language Processing Methods (2304.00115v1)

Published 31 Mar 2023 in cs.CL

Abstract: The ultrasound characteristics of thyroid nodules guide the evaluation of thyroid cancer in patients with thyroid nodules. However, the characteristics of thyroid nodules are often documented in clinical narratives such as ultrasound reports. Previous studies have examined NLP methods in extracting a limited number of characteristics (<9) using rule-based NLP systems. In this study, a multidisciplinary team of NLP experts and thyroid specialists, identified thyroid nodule characteristics that are important for clinical care, composed annotation guidelines, developed a corpus, and compared 5 state-of-the-art transformer-based NLP methods, including BERT, RoBERTa, LongFormer, DeBERTa, and GatorTron, for extraction of thyroid nodule characteristics from ultrasound reports. Our GatorTron model, a transformer-based LLM trained using over 90 billion words of text, achieved the best strict and lenient F1-score of 0.8851 and 0.9495 for the extraction of a total number of 16 thyroid nodule characteristics, and 0.9321 for linking characteristics to nodules, outperforming other clinical transformer models. To the best of our knowledge, this is the first study to systematically categorize and apply transformer-based NLP models to extract a large number of clinical relevant thyroid nodule characteristics from ultrasound reports. This study lays ground for assessing the documentation quality of thyroid ultrasound reports and examining outcomes of patients with thyroid nodules using electronic health records.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com