Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 43 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Linear Model Predictive Control under Continuous Path Constraints via Parallelized Primal-Dual Hybrid Gradient Algorithm (2303.17889v2)

Published 31 Mar 2023 in math.OC

Abstract: In this paper, we consider a Model Predictive Control (MPC) problem of a continuous-time linear time-invariant system subject to continuous-time path constraints on the states and the inputs. By leveraging the concept of differential flatness, we can replace the differential equations governing the system with linear mapping between the states, inputs, and flat outputs (including their derivatives). The flat outputs are then parameterized by piecewise polynomials, and the model predictive control problem can be equivalently transformed into a Semi-Definite Programming (SDP) problem via Sum-of-Squares (SOS), ensuring constraint satisfaction at every continuous-time interval. We further note that the SDP problem contains a large number of small-size semi-definite matrices as optimization variables. To address this, we develop a Primal-Dual Hybrid Gradient (PDHG) algorithm that can be efficiently parallelized to speed up the optimization procedure. Simulation results on a quadruple-tank process demonstrate that our formulation can guarantee strict constraint satisfaction, while the standard MPC controller based on the discretized system may violate the constraint inside a sampling period. Moreover, the computational speed superiority of our proposed algorithm is collaborated by numerical simulation.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube