Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Who You Play Affects How You Play: Predicting Sports Performance Using Graph Attention Networks With Temporal Convolution (2303.16741v1)

Published 29 Mar 2023 in cs.LG and cs.SI

Abstract: This study presents a novel deep learning method, called GATv2-GCN, for predicting player performance in sports. To construct a dynamic player interaction graph, we leverage player statistics and their interactions during gameplay. We use a graph attention network to capture the attention that each player pays to each other, allowing for more accurate modeling of the dynamic player interactions. To handle the multivariate player statistics time series, we incorporate a temporal convolution layer, which provides the model with temporal predictive power. We evaluate the performance of our model using real-world sports data, demonstrating its effectiveness in predicting player performance. Furthermore, we explore the potential use of our model in a sports betting context, providing insights into profitable strategies that leverage our predictive power. The proposed method has the potential to advance the state-of-the-art in player performance prediction and to provide valuable insights for sports analytics and betting industries.

Citations (1)

Summary

We haven't generated a summary for this paper yet.