Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
51 tokens/sec
GPT-4o
60 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
8 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Evaluation of ChatGPT for NLP-based Mental Health Applications (2303.15727v1)

Published 28 Mar 2023 in cs.CL and cs.AI

Abstract: LLMs (LLM) have been successful in several natural language understanding tasks and could be relevant for NLP-based mental health application research. In this work, we report the performance of LLM-based ChatGPT (with gpt-3.5-turbo backend) in three text-based mental health classification tasks: stress detection (2-class classification), depression detection (2-class classification), and suicidality detection (5-class classification). We obtained annotated social media posts for the three classification tasks from public datasets. Then ChatGPT API classified the social media posts with an input prompt for classification. We obtained F1 scores of 0.73, 0.86, and 0.37 for stress detection, depression detection, and suicidality detection, respectively. A baseline model that always predicted the dominant class resulted in F1 scores of 0.35, 0.60, and 0.19. The zero-shot classification accuracy obtained with ChatGPT indicates a potential use of LLMs for mental health classification tasks.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Bishal Lamichhane (9 papers)
Citations (61)