The Excluded Tree Minor Theorem Revisited
Abstract: We prove that for every tree $T$ of radius $h$, there is an integer $c$ such that every $T$-minor-free graph is contained in $H\boxtimes K_c$ for some graph $H$ with pathwidth at most $2h-1$. This is a qualitative strengthening of the Excluded Tree Minor Theorem of Robertson and Seymour (GM I). We show that radius is the right parameter to consider in this setting, and $2h-1$ is the best possible bound.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.