Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

HRDoc: Dataset and Baseline Method Toward Hierarchical Reconstruction of Document Structures (2303.13839v1)

Published 24 Mar 2023 in cs.CL and cs.CV

Abstract: The problem of document structure reconstruction refers to converting digital or scanned documents into corresponding semantic structures. Most existing works mainly focus on splitting the boundary of each element in a single document page, neglecting the reconstruction of semantic structure in multi-page documents. This paper introduces hierarchical reconstruction of document structures as a novel task suitable for NLP and CV fields. To better evaluate the system performance on the new task, we built a large-scale dataset named HRDoc, which consists of 2,500 multi-page documents with nearly 2 million semantic units. Every document in HRDoc has line-level annotations including categories and relations obtained from rule-based extractors and human annotators. Moreover, we proposed an encoder-decoder-based hierarchical document structure parsing system (DSPS) to tackle this problem. By adopting a multi-modal bidirectional encoder and a structure-aware GRU decoder with soft-mask operation, the DSPS model surpass the baseline method by a large margin. All scripts and datasets will be made publicly available at https://github.com/jfma-USTC/HRDoc.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (7)
  1. Jiefeng Ma (21 papers)
  2. Jun Du (130 papers)
  3. Pengfei Hu (54 papers)
  4. Zhenrong Zhang (37 papers)
  5. Jianshu Zhang (36 papers)
  6. Huihui Zhu (21 papers)
  7. Cong Liu (169 papers)
Citations (9)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com