Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

ReVersion: Diffusion-Based Relation Inversion from Images (2303.13495v2)

Published 23 Mar 2023 in cs.CV

Abstract: Diffusion models gain increasing popularity for their generative capabilities. Recently, there have been surging needs to generate customized images by inverting diffusion models from exemplar images, and existing inversion methods mainly focus on capturing object appearances (i.e., the "look"). However, how to invert object relations, another important pillar in the visual world, remains unexplored. In this work, we propose the Relation Inversion task, which aims to learn a specific relation (represented as "relation prompt") from exemplar images. Specifically, we learn a relation prompt with a frozen pre-trained text-to-image diffusion model. The learned relation prompt can then be applied to generate relation-specific images with new objects, backgrounds, and styles. To tackle the Relation Inversion task, we propose the ReVersion Framework. Specifically, we propose a novel "relation-steering contrastive learning" scheme to steer the relation prompt towards relation-dense regions, and disentangle it away from object appearances. We further devise "relation-focal importance sampling" to emphasize high-level interactions over low-level appearances (e.g., texture, color). To comprehensively evaluate this new task, we contribute the ReVersion Benchmark, which provides various exemplar images with diverse relations. Extensive experiments validate the superiority of our approach over existing methods across a wide range of visual relations. Our proposed task and method could be good inspirations for future research in various domains like generative inversion, few-shot learning, and visual relation detection.

Citations (50)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets