Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Don't Peek at My Chart: Privacy-preserving Visualization for Mobile Devices (2303.13307v2)

Published 23 Mar 2023 in cs.HC and cs.CR

Abstract: Data visualizations have been widely used on mobile devices like smartphones for various tasks (e.g., visualizing personal health and financial data), making it convenient for people to view such data anytime and anywhere. However, others nearby can also easily peek at the visualizations, resulting in personal data disclosure. In this paper, we propose a perception-driven approach to transform mobile data visualizations into privacy-preserving ones. Specifically, based on human visual perception, we develop a masking scheme to adjust the spatial frequency and luminance contrast of colored visualizations. The resulting visualization retains its original information in close proximity but reduces the visibility when viewed from a certain distance or further away. We conducted two user studies to inform the design of our approach (N=16) and systematically evaluate its performance (N=18), respectively. The results demonstrate the effectiveness of our approach in terms of privacy preservation for mobile data visualizations.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Songheng Zhang (6 papers)
  2. Dong Ma (32 papers)
  3. Yong Wang (498 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.