Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Uniform Risk Bounds for Learning with Dependent Data Sequences (2303.11650v1)

Published 21 Mar 2023 in cs.LG and stat.ML

Abstract: This paper extends standard results from learning theory with independent data to sequences of dependent data. Contrary to most of the literature, we do not rely on mixing arguments or sequential measures of complexity and derive uniform risk bounds with classical proof patterns and capacity measures. In particular, we show that the standard classification risk bounds based on the VC-dimension hold in the exact same form for dependent data, and further provide Rademacher complexity-based bounds, that remain unchanged compared to the standard results for the identically and independently distributed case. Finally, we show how to apply these results in the context of scenario-based optimization in order to compute the sample complexity of random programs with dependent constraints.

Citations (1)

Summary

We haven't generated a summary for this paper yet.