Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
124 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Relate auditory speech to EEG by shallow-deep attention-based network (2303.10897v1)

Published 20 Mar 2023 in cs.SD, cs.CL, eess.AS, and q-bio.NC

Abstract: Electroencephalography (EEG) plays a vital role in detecting how brain responses to different stimulus. In this paper, we propose a novel Shallow-Deep Attention-based Network (SDANet) to classify the correct auditory stimulus evoking the EEG signal. It adopts the Attention-based Correlation Module (ACM) to discover the connection between auditory speech and EEG from global aspect, and the Shallow-Deep Similarity Classification Module (SDSCM) to decide the classification result via the embeddings learned from the shallow and deep layers. Moreover, various training strategies and data augmentation are used to boost the model robustness. Experiments are conducted on the dataset provided by Auditory EEG challenge (ICASSP Signal Processing Grand Challenge 2023). Results show that the proposed model has a significant gain over the baseline on the match-mismatch track.

Citations (3)

Summary

We haven't generated a summary for this paper yet.